Select Page

Image by Yellowcloud

Imagine if instead of having sensor lights to illuminate a garden path, you could line it with light-emitting plants. You could stroll along bio-luminescent flower beds, dancing in dappled moonlight and delighting in eerily lit peace, free from the shackles of electricity.

It could be possible with sea urchin shaped gold nanoparticles. Seriously, every time I turn on my computer the world gets more random. Sea urchins, I ask you. In any event, they’re called nano-sea-urchins.

Taiwanese researchers made a solution of gold nano-sea-urchins and dipped into it an aquatic plant, Bacopa caroliniana or blue waterhyssop. The nanoparticles moved into the plant over a day or so, and stayed there for about a month.

When exposed to UV light, the nanoparticles produced blue-violet light which encouraged the chlorophyll inside the plant to make red light. The result? An awesome glowing plant, just add UV.

It’s exciting stuff, there are a lot of excellent uses for light emitting things that work inside plants or animals. If the particles could be attached to a drug we could track exactly where the drug goes over the course of a treatment. You could attach it to proteins and find out where they are located inside a plant. Or you could just have a sweet glow in the dark plant in your house or garden.

Of course, you still need to have that UV source. But what’s wrong with having black light in your house or garden? Just think of the possibilities… You could drink tonic water every day, that stuff glows blue in black light because of the quinine.

Also, if you’ve ever wondered if black light can cause sunburn (as I recently have) here’s the low down. Black light is made of UV light which is close in wavelength to visible light, so it’s quite low energy. This counts as UVA, not UVB which causes most sunburns. Large amounts of UVA (such as those found in tanning beds) can cause skin cancer or premature aging, but the small amount contained in black lights is unlikely to do much damage.

ResearchBlogging.orgSu, Y., Tu, S., Tseng, S., Chang, Y., Chang, S., & Zhang, W. (2010). Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins Nanoscale DOI: 10.1039/C0NR00330A

Hat tip to New Scientist