Posts Tagged ‘what is’

Good God Particle, is that the Higgs boson?

// July 5th, 2012 // Comments Off on Good God Particle, is that the Higgs boson? // Recent Research

higgs boson

Simulated model of Higgs boson decaying into four muons (shown in yellow). Image by CERN.

The world of science is abuzz with the news! CERN have discovered a new particle, and it looks like the elusive Higgs boson. That large hadron collider has really come in handy!

It was announced today at CERN as a ‘curtain raiser’ for the International Conference of High Energy Physics – ICHEP2012 – currently on in Melbourne, Australia. And what a curtain raiser it is.

The Higgs boson is a subatomic particle that, theoretically, gives mass to everything. It interacts with the Higgs field which permeates the Universe, kicking up a drag as it moves. That drag, or attraction, gives protons and electrons their mass as they zoom through the Higgs field. In the model, the Higgs boson is absent in photons of light, which is why they have no mass.

It’s been a long, hard road to find it – taking 45 years. Why? Partly because, after the collisions, they decay very fast, and partly because the way in which they decay doesn’t stand out. It seems to vanish into very normal smoke, that is, quarks, antiquarks and muons the same as those made by run-of-the-mill activity from other LHC collisions. It’s like trying to spot stars in daylight, according to this neat article by Matt Strassler.

The physicists are being cautious with their discovery, describing it as a Higgs-like particle. There’s more data analysis and experiments to be done. But if it looks and smells like a Higgs boson…

Peter Higgs

Will Peter Higgs, theoretical physicist, be winning a Nobel Prize for this? Image by CERN and Claudia Marcelloni.

What it looks and smells like, to be precise, is a ‘bump’ in the data with a mass of 125.3 gigaelectronvolts, about as heavy as 125 protons.

Analysing the data, so far, has put it at a confidence level of 5 sigma. That means there’s less than a one-in-three million chance of receiving the same result completely by chance, without a Higgs boson. Put another way, that means they can feel over 99.999 percent sure this is it – a boson that acts like a Higgs.

“The results are preliminary but the 5 sigma signal at around 125 GeV we’re seeing is dramatic. This is indeed a new particle. We know it must be a boson and it’s the heaviest boson ever found,” said CMS experiment spokesperson Joe Incandela in the press release. “The implications are very significant and it is precisely for this reason that we must be extremely diligent in all of our studies and cross-checks.”

“It’s hard not to get excited by these results,” said CERN Research Director Sergio Bertolucci in the same release.

It is exciting! Even though it’s still a preliminary result – guys, it could be the God particle! How cool is that?

SKA – Something Kinda Awesome and a tremendous telescope

// May 12th, 2011 // Comments Off on SKA – Something Kinda Awesome and a tremendous telescope // How Things Work, Recent Research

The Australian Government just announced it will spend 40 million dollars over the next four years to support Australia’s bid to host the Square Kilometre Array (SKA.) If, like me last week, you’re not really sure what the SKA is and Google seems to think it’s some kind of music – here’s the lowdown based on the RiAus event I went to on Thursday hosted by Professor Peter Quinn.

The SKA is a radio telescope 10,000 times more powerful than any other, a single scientific instrument comprised of individual dish antennas 15 metres wide working together.

Artist impression of SKA

Artist's impression of dishes that will make up the SKA radio telescope. Credit: Swinburne Astronomy Productions/ SKA Program Development Office.

From a central, densely packed core, receiving dishes will spread outward an area of over 3,000 kilometres. Combining their signals creates a telescope with the collecting area equivalent to a single dish one square kilometre in area.

Where will this massive instrument live?

The shortlist has been whittled down to two: South Africa and Australia. If in South Africa, the dishes will reach onto islands in the Indian Ocean. If in Australia, they will extend into New Zealand.

The final decision will be announced next year. Being Australian, naturally I’m hoping we’ll get the honour.

Murchison SKA candidate location

The candidate core site in Murchison Shire, WA. Credit: Ant Schinckel, CSIRO.

Our bid puts the SKA core in the Western Australia desert, Murchison Shire.

From here, the dishes would spiral out in five long arms across Australia and New Zealand.

The proposed core site is a space the size of the Netherlands, it contains 110 permanent residents.

With low population comes low radio interference. CSIRO scientists are working on innovative solutions to keep the site radio-quiet.

For example, trains in the region currently communicate by radio, and there’s dialogue to come up with an alternative that will work for trains without interfering with the SKA.

What will we find out there with our powerful telescope? Well, if ET phones home within our galaxy, with the SKA, we’ll hear it. In the next post, I’ll talk more about finding first light, when the galaxies began to glow.

Here’s more about the SKA: Australian site and International site.






Buy me a Beer!
    If you don't want me to mention your donation just check the box above.
  • $ 0.00
Twittarrr
Follow @CaptainSkellett (561 followers)
Find Me Writin’s