Posts Tagged ‘Evolution’

Exploring the blurry line between colony and individual

// August 3rd, 2011 // 1 Comment » // The Realm of Bizzare

I found this great post on the Portuguese man-o-war, known as the bluebottle in Australia, over at Deep Sea News the other day. It’s eating a fish!

The post also said:

Remember this species is colonial and made of four different polyps or zooids, working in unison and dividing labor. The bladder is a single polyp called a pneumatophore. The long tentacles are dactylzooids used for fishing. The dactylzooids bring the fish up to another set of zooids, gastrozooids, responsible for digestion. Last, there is set of zooids, gonozooids, in charge of reproduction.

So it looks like a jellyfish, but it ain’t. It’s a colony of four specialists working together, each with their own nervous system but incapable of living by themselves.

Bluebottle on Woolongong Beach, NSW. Image by Fiona Wilkinson

As I was doing a bit of research about bluebottles and how they sting even when dead and dried up, I came across an interesting question. How do they reproduce? If the gonozooids are responsible for getting jiggy with it, don’t they just make more gonozooids? Where do the rest of the polyps come from?

Well, no one really is a hundred percent sure. I guess that’s fair enough, studying a swarm (a navy) of man-o-wars during mating season doesn’t sound too good. But here’s what they think.

A gonozooid from one man-o-war will make sperm which combines with an egg from another man-o-war gonozooid. Hey presto, you’ve got fertilisation and one embryo – which will become the bladder polyp at the top. That embryo divides several times, then reproduces asexually to make more zooids, which bud out of it. The budding polyps will become either tentacle, digestion or reproduction individuals.

That’s where I got confused. Does this mean that each of the zooids actually come from a single polyp? Are they just differentiated forms of the original polyp, specialised for their particular role? How is this different to a human embryo producing heart cells?

One explanation uses phylogenetics – comparing organisms to see how similar and different they are. Each zooid is similar to solitary Cnidaria (the phylum that includes jellyfish, coral and bluebottles), so can be considered an individual in its own right and a bluebottle as a colony.

But if we define an individual as something with similarity to other individuals, then all the cells of a multicellular organism would be individuals. Are individual humans really colonies of individual human cells? Really, the microbes on and in you outnumber your human cells 10 to one, so you’re more like a walking microbial factory anyway.

White poplars, a kind of aspen, form clonal colonies. Image by Jacob Halun

I think we have a very human-centric model for defining individuals, which is not surprising really. But most species on the planet don’t reproduce like we do, the boundaries between individual and colony are much less clear.

Take aspen trees, which can grow by seeds (sexually) or by underground runners which sprout a tree-clone (asexually.) Over time the runners can decay separating the trees. How can we tell if the trees are individuals or clones, and if we can’t, how do we study adaptation and natural selection?

Tasmania has these Huon pines that are the oldest genetically identical stand of trees which has lasted 10,000 years. Each tree lives about 2,000 years, but the original tree renews itself through genetic clones. Tassie also has the oldest genetically identical plants, clones of King’s lomatia estimated to be at least 43,000 years old.

Strawberries do it too, as do fungus. A single specimen of Armillaria solidepes was found in Oregon the size of 1,220 football pitches and estimated at 2,400 years old. It’s one of the largest organisms in the world.

Where does the individual end and a colony begin? Looking at all the bizarre stuff out there, I can’t help but wonder if we’re the weird ones.

Clarke, E. (2010). The Problem of Biological Individuality Biological Theory, 5 (4), 312-325 DOI: 10.1162/BIOT_a_00068

Read it at the homepage of Ellen Clarke

The red queen, sex and nematode worms

// July 28th, 2011 // 1 Comment » // Recent Research, Sex and Reproduction


Alice and the Red Queen by John Tenniel

In Lewis Carroll’s Through the looking-glass– a whacky book if I ever read one – the laws of physics don’t really apply. Hills can become valleys, straight can become curvy, and forward is really backward.

In one scene, Alice chases after the Red Queen, both running as fast as they can, but when they stop Alice realises they are still right where they started. “Now, here, you see, it takes all the running you can do to keep in the same place” says the Red Queen.

And it might be the same with the evolution of predator and prey, host and parasite. Running doesn’t get you anywhere. So says the Red Queen Hypothesis.

c elegans embryo

C elegans embryo. Image by Monica Gotta

As the host adapts to fight the parasite, the parasite evolves to infect the host. It’s an endless race, and extinction faces the first organism to stop running.

So what’s this got to do with sex? Sex is evolution on turbo. Mixing and matching genes increases genetic diversity, giving a species more opportunities to outlast in the ultimate game of survivor.

Field data supports the Red Queen Hypothesis as describing an adaptive advantage of sex. Models and maths support the idea that coevolving species could select for rare genes and unusual combination randomly created by sex. Direct experimentation of coevolution and nookie is tricky business.

New research, published in Science, grew several populations of nematode worms (C. elegans, roundworms) which are usually asexually, but reproduce sexually 20% of the time.

The populations were differently exposed to bacterial parasites (Serratia marcescens) as shown.

C Elegans Sex Research

C Elegans image by Bob Goldstein, University of Carolina, Chapel Hill, remixed by Science Journal. Creative Commons License

One population was given the parasites and left to their own devices. They and their bacteria could evolve together. These nematode worms increased their rate of sexual reproduction to 80-90% over time, and maintained a high level of sexy-times.

The other nematodes were given frozen stocks of bacteria every generation, so the parasites weren’t evolving as the worms did. At first, sexual reproduction increased in the worms, but then it dropped back down to 20% – the same level as nematodes which hadn’t been exposed to the bacteria at all.Alice meets dodo

Parasites on their own don’t increase sex – coevolution does.

A second experiment supported their conclusion. Nematodes mutated to be unable to reproduce sexually (asexual obligates) became extinct after 20 generations when exposed to the parasites. But mutants that always required sex to reproduce (sexual obligates) never became extinct.

When it comes to coevolution, it’s fall behind and be left behind.

Never stop running.

Morran, L. et al (2011). Running with the Red Queen: Host-Parasite Coevolution Selects for Biparental Sex Science, 333 (6039), 216-218 DOI: 10.1126/science.1206360
Brockhurst, M. (2011). Sex, Death, and the Red Queen Science, 333 (6039), 166-167 DOI: 10.1126/science.1209420

Platypus. Poisonous, egg laying mammal with ten sex chromosomes

// October 13th, 2010 // 7 Comments » // Recent Research, Science Communication, Sex and Reproduction, The Realm of Bizzare


Image by Urville Djasim

Ah, the elusive platypus. The water dwelling animal with fur, webbed feet and a beak. It may just be the strangest animal on the planet. Not only does it look weird, it’s poisonous, can sense electricity, lays eggs and secrete milk through their skin, and have an excessive number of sex chromosomes.

It’s poisonous.
It is SERIOUSLY poisonous. The males have poison barbs under their front feet which they mainly use during the spring breeding season. One scratch from these babies and you will be in terrible agony.

My friend studied platypuses (yes, that’s the plural I checked) in honours and her colleague injected himself with platypus venom in the name of science. For months he had excruciating pain for months which did not respond to any painkillers, including morphine. Because of this quality, platypus venom could help scientists develop drugs which work differently to our current repertoire.

Research into platypus venom is lacking because it is hard to come across samples. But just last month researchers identified 83 possible venom genes using DNA extracted from an active venom gland. Some of the genes are similar to those in snakes, pufferfish and starfish. Now the platypus hardly evolved from a starfish. Instead, it’s an example of convergent evolution, traits that arise separately in different species and give a selective advantage. Illustrious journal Nature says platypus venom confirms the convergent evolution theory for venom. (Research paper Whittington CM, & et al (2010). Novel venom gene discovery in the platypus. Genome biology, 11 (9) PMID: 20920228)

Electroreceptor bill
Sharks use electroreception to find prey by sensing the electricity animals have in their body. Monotromes (mammals that lay eggs) including platypuses and echidnas, are the only mammals with the same ability, and the platypus is the strongest. Closing its eyes and nose when it dives, the platypus relies almost entirely on electrolocation and touch to find the tasty crustaceans it snacks on. Sharks and platypuses are hardly related, making this another yet another example of convergent evolution.

Electroreceptors are located in rows on the bill, which might help it find prey by noticing which receptors pick up the electricity first. We do the same thing with our ears, hearing noises at slightly different times tells us which direction the sound is coming from. When the platypus hunts, it moves its bill side to side, which might reveal how far away the prey is. It’s similar to how pigeons bob their head for depth perception.

Image by TwoWings

Laying eggs
A female platypus has two ovaries, but only the left one is functional. Why? We don’t know.

Eggs spend 28 days developing inside their mother’s body and 10 days outside. The babies (often called puggles) are born with teeth, which drop out as they mature.

The mother produces milk, but she doesn’t have teats or nipples. Instead puggles lick or nibble on her skin to drink, gaining nutrients and probably an immune system. Living in mud, platypuses are born with no immune system, making them worse off than human babies which have immature immune systems at birth and rely on colostrum to boost their protection.

Sex chromosomes
Since the platypus genome was sequenced in 2008, we know a bit about these strange sex chromosomes. We know that they are more similar to birds than mammals, suggesting that our own mammal-like reptile ancestors might have had sex chromosomes like the birds of today. But there’s one big difference that makes the platypus unique.

They have ten sex chromosomes. Males have five X and five Y. Females have ten X. Humans, in fact, almost all mammals have only two. During platypus sperm production, the sex chromosomes pair up as X1Y1, X2Y2, X3Y3, X4,Y4, X5,Y5, so they can split evenly to make sperm that have 5X or 5Y. Phew. After all that, I’m surprised the males have any energy left for mating.

When fish started to breathe air

// February 12th, 2010 // 3 Comments » // Recent Research

The Devonian Period was a golden age for life in the ocean, in fact it’s called the Age of Fishes. First the jawless fish evolved but soon swimming around in a fishy way seemed pretty sweet and everyone was doing it. Fish with jaws emerged and were hardcore with the eating of other fish, then ancient sharks hit the scene.

As life underwater was taking off, plants began to move to the land, perhaps they were sick of being lunch for fish. Green ferns were among the first to stake their leafy claim, but shortly after insects followed, and plants were right back to being lunch again.

There was lots of life, lots of diversity, lots of new things and lots of feasting to be had. But the party had to end eventually, and indeed the last 20 million years of the Devonian were part of a long, drawn out mass extinction.

The extinction at the end of the Devonian was massive, it’s in the “five major extinction events” along with our favourite dinosaur-ending Cretaceous episode. Nearly 70% of all invertebrates would never be seen again, and the marine world was the worst hit.

Why did this massive extinction happen?

Your guess is as good as mine, but there are theories about. One is that the plants stripped the carbon dioxide from the air, causing global cooling. Maybe an asteroid is to blame, which I blame the dinosaur extinction on myself. Or maybe they all got fish flu.

There’s some evidence in rocks which date back to that time that the waters were very low in oxygen at the time of the extinction, so perhaps that was involved. It’s probably a mixture of events that by themselves would have been okay, but add them together and not much can survive. Excluding this familiar character which has done a damn good job of surviving.

It was at the end of the Devonian that the lungfish evolved and made it’s way onto land, beginning an air-breathing trend that I am proud to continue.

Up until now people believed the lungfish grew up in freshwater, because there’s still some freshwater lungfish around today. Looks like the textbooks will have to be rewritten now, because of this little guy.

Saltwater Lungfish

Introducing a brand-new discovered-in-2008 lungfish Rhinodipterus that lived in SALTwater! Why does this matter? Well, it suggests that the ability to breathe air happened twice in the Devonian, once in freshwater and once in saltwater. The researchers suggest that one of these fish went on to evolve into other animals, while the other stayed back and remained a lungfish.

Their report will be published in this weeks edition of Biology Letters, which I’m sure all my readers will be DYING to read. But next time someone says “we evolved from lungfish” you can counter with “freshwater or salt?”

If you’d like to read more and don’t want to tackle the journal article, here’s the press release from the Australian National University. Hey, I study there. Maybe I should get an interview…

Buy me a Beer!
    If you don't want me to mention your donation just check the box above.
  • $ 0.00
Follow @CaptainSkellett (572 followers)