Posts Tagged ‘ethics’

Super cute kittens conceived by science

// March 18th, 2011 // 2 Comments » // Recent Research, Sex and Reproduction

african black-footed kitten

African black-footed kitten conceived by IVF

This little kitty is a rare African black-footed cat conceived through IVF in an attempt to keep the species alive.

About 40 of these cats live in zoos worldwide, while a few wild cats live in South Africa where they are protected, but sometimes poisoned and killed by farmers.

How could you poison these little kittens, they’re so CUTE!!! Ahem. So, I have been visiting Zooborns again, it’s a serious habit.

Let’s pretend this post is about something more than just cute pictures of cats, and talk about the science that conceived them.

Audubon Center for Research of Endangered Species aim to protect seriously endangered species by creating a “frozen zoo”, banking genetic material such as eggs, sperm, embryos and tissue samples. Frozen, thawed sperm and IVF technology sparked the life of these kittens, which were really conceived six years ago and frozen as embryos.

The embryos were thawed and implanted into the surrogate mother Bijou in December last year.

african black-footed cat

Man, what did I DO last night?

It must be a bizarre experience for the mother, although I’ve heard tomcats have a barbed penis so perhaps she’s lucky to have skipped the usual event.

The frozen zoo contains frozen semen from the gorilla, Sumatran tiger, jaguar, Jabiru stork, and caracal. Other cell samples cover the African and Asian elephants, Baird’s tapir, colobus monkey, roan antelope, and black bear.

“The next step for us will be to clone the black-footed cat and transfer the embryo to a domestic cat surrogate,” said Audubon Center for Research of Endangered Species Senior Scientist Dr. C. Earle Pope in the media release.

Cloning endangered species, is that a good idea or not? I can’t tell.

What is the synthetic cell?

// May 22nd, 2010 // 1 Comment » // How Things Work, Recent Research

Two days ago scientists at J. Craig Venter announced the creation of the first self-replicating synthetic cell, a bacteria with DNA made in a lab. How did they do it, and what does it mean for us in the future?

First up, the scientists didn’t make life out of nothing, and they didn’t make a new species. They recreated a bacteria that already existed, and developed the techniques to do it.

The bacteria is Mycoplasma mycoides. It’s a parasite which lives in cows, and some subspecies cause cow lung disease. It has a circular chromosome made of just under 600,000 base pairs, making it a small genome.

The scientists had the genome sequence of M. mycoides and split it into bite-size portions and then synthesised. Synthesising DNA is nothing new, scientists have been able to write DNA code for quite a while, and can write whatever code they want to.

These little chunks were put into yeast, which can be forced to absorb little bits of DNA. Inside the yeast, the chunks can be sewn together. It’s called recombination. The resulting medium chunks were taken out and put into more yeast to be sewn together making large chunks. There were 11 large chunks were put into more yeast, and sewn together into one complete genome.

Along the way and at the end they checked the code was right by doing PCR tests, genetic fingerprinting made famous by CSI.

Result: A synthetic genome, written by a computer and put together in yeast sweatshops.

Now they had to get it into a bacterial cell. At first they tried to put the DNA into bacterial cells of a similar species, M. capricolum. They ran into trouble at first, because the DNA they had was unmethylated (lacking methyl groups) and the bacteria destroys DNA which is unmethylated. It’s a clever defense mechanism, and they got around it by methylating the DNA before putting it in.

Finally success. The synthetic genome was put into an M. capricolum bacteria where it replaced the normal genome. The bacteria were controlled by the new, synthetic chromosome and were able to replicate billions of times.

What does it mean for us in the future? The technology these guys have developed could be used to alter the DNA of bacteria and make them do new things. From medicine to clean water, the benefits could be huge. We already have this ability to some extent, but it opens up some new doors.

Some organisations have raised concerns about the work. Could a new bacteria be unleashed and take over the world? Probably not. It’s hard to predict how new genes will work in cells, and everything is linked together in a way we don’t understand now. Too much tinkering to the genome will probably not be tolerated by the cell. And if it did get outside, it would probably be extinct pretty quickly because it doesn’t have thousands of years of evolution to prepare it for the world.

If it did get out, we could track it back to the company in charge. These guys watermarked their genome by adding some quotes into the DNA/protein code. Now that’s just epically geeky!

ResearchBlogging.orgGibson, D., & et al (2010). Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome Science DOI: 10.1126/science.1190719






Buy me a Beer!
    If you don't want me to mention your donation just check the box above.
  • $ 0.00
Twittarrr
Follow @CaptainSkellett (564 followers)